SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems
نویسندگان
چکیده
منابع مشابه
Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving computationally expensive design problems with general constraints, on a limited computational budget. The essential backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic programming solver in the spirit of Lamarckian learning.We employ a trust-regi...
متن کاملSOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sort...
متن کاملA multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...
متن کاملMemetic algorithm using multi-surrogates for computationally expensive optimization problems
In this paper, we present a Multi-Surrogates Assisted Memetic Algorithm (MSAMA) for solving optimization problems with computationally expensive fitness functions. The essential backbone of our framework is an evolutionary algorithm coupled with a local search solver that employs multi-surrogates in the spirit of Lamarckian learning. Inspired by the notion of 'blessing and curse of uncertainty'...
متن کاملEvolutionary Optimization for Computationally expensive problems using Gaussian Processes
The use of statistical models to approximate detailed analysis codes for evolutionary optimization has attracted some attention [1-3]. However, those early methodologies do suffer from some limitations, the most serious of which being the extra tuning parameter introduceds. Also the question of when to include more data points to the approximation model during the search remains unresolved. Tho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INFORMS Journal on Computing
سال: 2017
ISSN: 1091-9856,1526-5528
DOI: 10.1287/ijoc.2017.0749